Urea-Derivatized p-tert-Butylcalix[4]arenes: Neutral Ligands for Selective Anion Complexation

Jurgen Scheerder, Mariacristina Fochi, ${ }^{\dagger}$ Johan F. J. Engbersen, and David N. Reinhoudt*
Laboratory of Organic Chemistry, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received June 6, 1994°

Abstract

Functionalization of the lower rim of p-tert-butylcalix[4]arene with four (thio)urea groups, results in a class of receptors selective for spherical anions that are bound exclusively through hydrogen bonding. ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3} reveals a selectivity for Cl^{-}over Br^{-}and I^{-}. The stoichiometry is 1:1 in all cases as was confirmed by Job plots. The association constants are strongly dependent on the nature of the substituent at the urea moiety. The bidentate phenylurea derivative 9 shows the strongest complexation ($K_{\text {ass. }} \mathrm{Cl}^{-}=7.1 \times 10^{3} \mathrm{M}^{-1}$) and the largest selectivity for Cl^{-}.

Introduction

Selective binding of ions is an important aspect of ion detection and ion transport. In the framework of our research program on membrane transport ${ }^{1}$ and sensors based on chemically modified field effect transistors (CHEMFETS) ${ }^{2}$ we have developed various receptors with selectivity for cations based on modified calix[4]arenes. ${ }^{2}$ Selective complexation of anions is more demanding than that of cations in view of the higher free energies of solvation of anions and the frequently occuring pH dependency of anion complexation. Generally, the ligands that have been developed for anion complexation in organic solvents can be divided into two classes. The first class consists of positively charged ligands, e.g. with ammonium ${ }^{3}$ or guanidinium moieties. ${ }^{4}$ The anion binding is achieved by electrostatic interactions as is the case for binding of ATP by polyammonium receptors developed by Lehn et al. ${ }^{3 \mathrm{c}, 5}$ and binding of carboxylates using guanidinium-based receptors developed by Schmidtchen and co-workers. ${ }^{40, d}$ Hydrogen bonding can provide additional binding energy as was shown for the binding of $\mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{Br}^{-}$, and $\mathrm{N}_{3}{ }^{-3 \text {,3a, }, \text {, zwitterionic } \omega \text {-amino car- }}$ boxylates, ${ }^{3 \mathrm{~b}}$ bisphenylphosphate and phosphoric acid, ${ }^{3 \mathrm{~d}}$ and for guanidinium-based receptors in the binding of

[^0]carboxylates ${ }^{4 \mathrm{~b}, 5}$ and cAMP. ${ }^{4 \mathrm{a}, 5}$ Recently, receptor molecules in which ferrocene or cobalticium moieties are combined with amide moieties have been used by de Beer et al. ${ }^{6}$ for complexation of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}{ }^{-}$, and HSO_{4}^{-}. These systems also are based on mutual electrostatic interactions and hydrogen bonding.

The second class of anion receptors are the neutral ligands, of which most have Lewis acid centers, like $\mathrm{Si}^{7,8}$ $\mathrm{B},{ }^{8,9} \mathrm{Sn},{ }^{10}$ or $\mathrm{Hg},{ }^{11}$ covalently incorporated. In these systems the complexation is based on the interaction between the Lewis acid centers and the anion. Also in these systems additional hydrogen bonding can provide further recognition sites, as was shown for uranylsalophens complexes functionalized with pendant amide groups developed earlier in our group. ${ }^{12}$ These anion receptors exhibit high selectivities for $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.

From crystal structures of sulfate ${ }^{13}$ and phosphate ${ }^{14}$ binding proteins it is known that nature can bind anions with high selectivity, exclusively by the formation of hydrogen bonds. Prokaryotic, periplasmic phosphate and sulfate binding proteins, exhibit selectivities of more than 10^{5} for binding of phosphate over sulfate and of sulfate over phosphate, respectively. ${ }^{15}$ Previously, we have reported that selective complexation of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$over Cl^{-} and $\mathrm{HSO}_{4}{ }^{-}$can be achieved by synthetic neutral tridentate sulfonamide receptors derived from tris(aminoethyl)-

[^1]Scheme 1

amine (TREN) ${ }^{16}$ and that four sulfonamide groups positioned at the upper rim of calix[4]arene are well suited for complexation of $\mathrm{HSO}_{4}-{ }^{-17}$ Both systems complex anions exclusively through hydrogen bonding. As an extension of this work the anion binding and recognition properties of preorganized urea moieties have been explored. The urea moiety is a powerful hydrogen bond donor as was recently shown by Hamilton et al. ${ }^{18,19 a}$ and Rebek et al. ${ }^{19 b}$ in the complexation of (di)carboxylate anions.

Here, we report the synthesis and complexation behavior of various p-tert-butylcalix[4]arenes 5a-d, 6, and 9 modified with substituted (thio)urea groups at the lower rim via an alkyl spacer. These novel neutral anion receptors also bind anions exclusively through hydrogen bonding. The stoichiometry of binding is $1: 1$ and the selectivity is strongly dependent on the number of urea units and the nature of the substituents at the urea moiety.

Results and Discussion

Due to its preorganized structure p-tert-butylcalix[4]arene ${ }^{20}$ is well suited as a molecular building block for the positioning of ligating groups. ${ }^{21}$ Modification of the lower rim of p-tert-butylcalix[4]arene with four urea moieties via a spacer would lead to a ligand possessing eight hydrogen-bond donor sites directed to one face.

[^2]According to molecular modeling, a butylene spacer is able to orient the four urea moieties properly to create a cavity suitable for the complexation of anions.

The key intermediate for the synthesis of the urea calix[4]arenes is the tetrakis[(aminobutyl)oxy]calix[4]arene 4, which was obtained by the borohydride reduction of the tetrakis[(cyanopropyl)oxy]calix[4]arene 3. The tetrakis[(cyanopropyl)oxy]calix[4]arene 3 was prepared in two steps from p-tert-butylcalix[4]arene 1 (Scheme 1).

Reaction of p-tert-butylcalix[4]arene with 10 equiv of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 4-bromobutyronitrile in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ gave only the disubstituted 25,27 -bis[(cyanopropyl)oxy]-26,28-dihydroxy-p-tert-butylcalix[4]arene 2 in 68% yield after trituration with MeOH . When the reaction was performed with 8 equiv of NaH and 4-bromobutyronitrile in DMF at $75^{\circ} \mathrm{C}$ for prolonged time a mixture of the starting material 1, the disubstituted calix[4]arene 2, and the desired tetrakis[(cyanopropyl)oxy]calix[4]arene 3 was obtained. However, compound 2 could be alkylated completely using 10 equiv of NaH and 4-bromobutyronitrile in DMF at $75^{\circ} \mathrm{C}$, yielding calix[4]arene 3 in 52% yield. The ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$ shows a pair of doublets at 4.27 and 3.22 ppm for the bridging methylene protons, and the ${ }^{13} \mathrm{C}$ NMR spectrum showed a triplet at 31.0 ppm for the corresponding carbon atoms, indicating that the cone conformation was retained..22,23 Reduction of the cyano groups with $\mathrm{NaBH}_{4} / \mathrm{CoCl}_{2}{ }^{24}$ in MeOH yielded the tetrakis[(aminobutyl)oxy]calix[4]arene 4 in 84% yield. Addition of 4 equiv of alkyl- or aryl(thio)isocyanate in CHCl_{3} to tetrakis[(aminobutyl)oxy]calix[4]arene 4 at room temperature ${ }^{25}$ gave the corresponding aryl- or alkyl(thio)urea derivatives in $40-76 \%$ yield.

The bidentate phenylurea derivative 9 was synthesized as depicted in Scheme 2. The hydroxyl groups of com-

[^3]Scheme 2

pound 2 were propylated using NaH / n-propyl iodide in DMF. Under these conditions the cone conformation of the tetrasubstituted calix[4]arene is obtained. ${ }^{26}$ Reduction of the cyano groups and reaction with phenyl isocyanate were performed as described above, yielding the phenylurea derivative 9 in 35% yield.

It is well known that intermolecular association in $\mathrm{N}, \mathrm{N}^{\prime}$-diarylated urea derivatives ${ }^{27}$ and $\mathrm{N}, \mathrm{N}^{\prime}$-dialkylated urea derivatives ${ }^{28}$ occurs by the formation of two-centered hydrogen bonds. However, according to molecular modeling, the NH^{b} protons in the urea calix[4]arene derivatives are well positioned for intramolecular hydrogen bonding to the neighboring carbonyl groups, which points the NH^{a} protons toward the neighboring R group. In the case of $R=$ phenyl (5a) the N^{a} protons then have an edge-to-face interaction with the phenyl rings, explaining the upfield shift of the NH^{a} protons (0.45 ppm) which is observed for this compound as compared with the n propylurea derivative 5b.

Since it is known that Cl^{-}and Br^{-}anions are good hydrogen bond acceptors ${ }^{29}$ and the hydrogen bond donor sites of the urea moiety act as hard Lewis acids ${ }^{30}$ it was expected that the addition of the hard Lewis bases Cl^{-}and Br^{-}would lead to complexation. In the negative FAB mass spectrum of $1: 1$ mixtures of 5 a with $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}(prepared by evaporating a $1: 1$ mixture of host and the corresponding tetrabutylammonium salts in CHCl_{3}) a peak corresponding to [5a $\left.+\mathrm{Cl}^{-}\right]^{-},\left[5 \mathbf{a}+\mathrm{Br}^{-}\right]^{-}$, and [5a+ $\left.\mathrm{I}^{-}\right]^{-}$was observed in addition to the peak of the free ligand. In ${ }^{1} \mathrm{H}$ NMR experiments a downfield shift of all NH protons was observed upon addition of tetrabutylammonium salts of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{CN}^{-}$, and

[^4]SCN^{-}to hosts 5a-d, 6, and 9. The ${ }^{1} \mathrm{H}$ NMR titration curve of the titrations of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}to host 5 a is depicted in Figure 1. In all cases the stoichiometry is 1:1 as was confirmed by Job plots ${ }^{31}$ (see for an example Figure 2). The association constants of the various anion receptors were determined by a nonlinear regression program ${ }^{32}$ and are summarized in Table 1.
The data in Table 1 show that the association constant for anion binding of the various calix[4]arene derivatives is strongly dependent on the nature of the substituent at the urea moiety. Generally, the host compounds show a preference for the anions in the order of $\mathrm{Cl}^{-}>\mathrm{Br}^{-}>$ CN^{-}and only limited binding affinity for I^{-}and SCN^{-}. None of the urea derivatives show complexation with F^{-} and $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ions.
Especially in the case of phenylurea derivative 5a and bidentate phenylurea derivative 9 the change in chemical shift upon the addition of anions is large. Addition of 1 equiv of $\mathrm{Bu}_{4} \mathrm{NCl}$ causes a downfield shift of 0.68 ppm for NH^{a} and 0.91 ppm for NH^{b} for compound 5a and a downfield shift of 1.09 ppm for NH^{a} and 1.38 ppm for NH^{b} for compound 9. Also, a small downfield shift for the ortho protons of the phenyl rings and small upfield shifts of the meta and para protons of the phenyl groups are observed, which may be attributed to an increased electron density in the phenyl rings due to the presence of the anion.

Phenylurea derivative 5a shows a relatively strong association with Cl^{-}and only very weak complexation with I^{-}and SCN^{-}. The latter may be attributed to the soft nature of these anions. The selectivity of Cl^{-}over Br^{-}and CN^{-}may be attributed to the stronger hydrogen bond accepting properties of Cl^{-}and the higher complementarity of the cavity of $5 \mathbf{5 a}$ for Cl^{-}, respectively. Although F^{-}is a very strong hydrogen bond acceptor, no complexation is observed. Molecular modeling shows

[^5]

Figure 1. Titration curve of tetraphenylurea calix[4]arene 5 a with $\mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{Bu}_{4} \mathrm{NBr}$, and $\mathrm{Bu}_{4} \mathrm{NI}$ in CDCl_{3}. Concentration host is 5 mM .

Figure 2. Job plot of the titration of $5 \mathrm{mM} \mathrm{Bu}{ }_{4} \mathrm{NCl}$ in CDCl_{3} with 5 mM tetraphenylurea calix[4]arene $\mathbf{5 a}$ in CDCl_{3}.

Table 1. $K_{\text {ass. }}$. Values $\left(M^{-1}\right)$ of Urea-Derivatized p-tert-Butylcalix[4]arenes

compd					
Cl^{-a}	Br^{-}	I^{-}	CN^{-}	SCN^{-}	
$\mathbf{5 a}$	2660	1735	<25	855	<25
$\mathbf{5 b}$	<25	<25	<25	<25	<25
$\mathbf{5 c}$	285	450	-	550	-
$\mathbf{5 d}$	2015	1225	-	80	-
$\mathbf{6}$	335	575	<25	855	<25
$\mathbf{9}$	7105	2555	605	1115	<25

${ }^{a}$ Tetrabutylammonium salts. Concentration host is 5 mM in CDCl_{3}. Concentration guest is 5 mM in CDCl_{3}. Estimated error $<5 \%$.
that the tetrahedral $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is too large to fit into the cavity. Moreover, the hydrogen bond donor and acceptor sites of this anion are not complementary with the hydrogen bond donor sites in the cavity.
For the n-propylurea derivative $\mathbf{5 b}$ only weak binding of anions is observed. The NH protons of the free host 5b show almost no change in chemical shift when 0.5 equiv of $\mathrm{Bu}_{4} \mathrm{NCl}$ are added, and addition of 1 equiv of $\mathrm{Bu}_{4} \mathrm{NCl}$ causes only a downfield shift of 0.11 and 0.12 ppm for NH^{b} and NH^{a}, respectively. The weak anion binding ability of $\mathbf{5 b}$ is most likely due to the fact that this compound, having relatively small propyl substitu-
ents at the urea moieties, forms intra- and intermolecular hydrogen bonds to a high degree, which must be disrupted upon anion complexation. ${ }^{33,34}$

For the purpose of membrane transport studies ${ }^{35}$ the more lipophilic tetrakis(n-octylurea)calixarene 5c and tetrakis(tert-butylurea) calixarene $\mathbf{5 d}$ were synthesized. Both compounds show no complexation of I^{-}and SCN^{-} anions. Compound 5 c shows only weak complexation and some selectivity for $\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}$. However, the tert-butylurea compound 5d shows strong complexation of Cl^{-}and Br^{-}and weak complexation of CN^{-}. Molecular models show that the bulky tert-butyl groups hinder the formation of intra- and intermolecular hydrogen bonding, thus creating a cavity more apt to bind a guest anion. The selectivity is more governed by geometry than by size, since large differences in binding constants were observed for Cl^{-}and CN^{-}, having approximately the same size (Cl^{-}: $1.81 \AA ; \mathrm{CN}^{-}: 1.82 \AA$) but different geometry.

In an attempt to further increase the strength of the anion complexation the phenylthiourea derivative 6 was synthesized. Due to the increased acidity of the NH protons of thiourea compared to urea (thiourea $\mathrm{p} K_{\mathrm{a}}=$ 21.0; urea $\mathrm{p} K_{\mathrm{a}}=26.9$), ${ }^{36}$ the anion complexation was expected to be stronger. The increased acidity is evident from the ${ }^{1} \mathrm{H}$ NMR spectrum of 6 where the NH^{b} protons are shifted 0.19 ppm and the $\mathrm{NH}^{\text {a }}$ proton 0.63 ppm to lower field compared to the urea analogue 5a. However, only weak complexation and selectivity is observed for 6. A modest selectivity for CN^{-}over Cl^{-}and Br^{-}is present and no complexation of I^{-}and SCN^{-}is observed. The reason for the weaker anion binding properties of 6 may be that the enhanced hydrogen donating ability of the thiourea groups more strongly promotes the competing intra- and intermolecular hydrogen bonding, resulting in decreased anion binding affinity.

The binding properties of bidentate phenylurea 9 were studied in order to evaluate the influence of the number of hydrogen bond donor sites of the receptors. Two counteracting effects may play a role. First derivative 9 is less preorganized than tetrakis(phenylurea) compound 5a, which may cause a decrease in association constant. Second, for bidentate phenylurea derivative 9 the selfassociation of the urea moieties ${ }^{27,28}$ will be reduced which may give rise to a higher association constant with guest species. The changes in chemical shifts upon addition of anions are larger for the bidentate phenylurea 9 than for tetrakis(phenylurea) 5a. Addition of 1 equiv of $\mathrm{Bu}_{4}-$ NCl shifts the NH^{b} proton of $\mathbf{5 a} 0.91 \mathrm{ppm}$ and that of $\mathbf{9}$ 1.31 ppm downfield. Although compound 9 has four hydrogen bond donor sites less, the association constants are significantly higher and the selectivity for Cl^{-}over Br^{-}and CN^{-}is increased. Since less self-complementary urea moieties are present, the extent of intra- and intermolecular hydrogen bond association is much lower in the bidentate phenylurea derivative 9 than in the tetrakis(phenylurea) derivative 5a. As a consequence, the disruption of self-associative hydrogen bonds is less pronounced for 9 , making anion complexation energeti-

[^6]cally more favorable. The lower degree of hydrogen bonding of 9 is also reflected in the large difference in chemical shift of the NH^{b} protons of the anion-free and anion-complexed form of 9 compared to the difference noted with 5a. In the presence of 9 equiv of $\mathrm{Bu}_{4} \mathrm{NCl}$ (almost complete complexation of the host) the change in chemical shift is 0.93 ppm for $\mathbf{5 a}$ and 1.62 ppm for 9.

Conclusions

We have synthesized a new class of neutral ligands which are able to bind anions in a $1: 1$ stoichiometry exclusively through hydrogen bonding. A good selectivity for spherical anions is obtained, in the order $\mathrm{Cl}^{-}>\mathrm{Br}^{-}$ $>\mathrm{I}^{-}$. Only moderate complexation of CN^{-}, weak complexation of SCN^{-}, and no binding with F^{-}and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ is observed. The use of these ligands as carriers for anion transport of spherical anions in membranes and as anion receptors in ion-selective membranes for ion sensing are currently under investigation.

Experimental Section

Melting points were determined with a Reichert melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AC250F (250 MHz) spectrometer in CDCl_{3}, unless stated otherwise, with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. FAB mass spectra were obtained with a Finnigan MAT90 mass spectrometer using m-nitrobenzyl alcohol (NBA) as a matrix. FTIR spectra were recorded on a Biorad 3200 spectrometer. p-tert-Butylcalix[4]arenes were prepared according a modified literature procedure. ${ }^{37} \mathrm{NaH}$ was used as an 80% dispersion in oil and washed twice with n -hexane before use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaCl_{2} and stored over molecular sieves ($4 \AA$). DMF was stored over molecular sieves ($4 \AA$), $\mathrm{CH}_{3} \mathrm{CN}$ was stored over molecular sieves ($3 \AA$). MeOH was distilled over Mg and stored over molecular sieves ($4 \AA$). All other solvents and chemicals were of reagent grade and were used without purification. Silica gel (particle size $0.040-0.063 \mathrm{~mm}, 230-240 \mathrm{mesh}$) was obtained from Merck. All reactions were carried out under an argon atmosphere. For reasons of clarity and in order to reduce space, the name calix[4]arene was used instead of the original IUPAC name: pentacyclo[19.3.1.1 $1^{3,7} \cdot 1^{9,13} \cdot 1^{15,19}$]octacosa$1(25), 3,5,7(28), 9,11,13(27), 15,17,19(26), 21,23$-dodecane. The presence of solvent in the analytical samples was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(cyanopropyl)-oxy]-26-28-dihydroxycalix[4]arene (2). p-tert-Butylcalix[4]arene ($5.0 \mathrm{~g}, 7.72 \mathrm{mmol}$) $1, \mathrm{~K}_{2} \mathrm{CO}_{3}(1.28 \mathrm{~g}, 9.26 \mathrm{mmol})$, and 4-bromobutyronitrile ($2.40 \mathrm{~g}, 16.20 \mathrm{mmol}$) was refluxed in $\mathrm{CH}_{3}-$ $\mathrm{CN}(80 \mathrm{~mL})$ for 5 days. The reaction was monitored by TLC ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=99: 1$). The solvent was evaporated and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, washed with 1 $\mathrm{N} \mathrm{HCl}(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and brine (50 mL), and dried with $\mathrm{MgSO}_{4} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and the residue was recrystallized from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ yielding a white solid: yield 70%; mp $\geq 300^{\circ} \mathrm{C}$; IR (KBr) $2247 \mathrm{~cm}^{-1}$ (CN); ${ }^{1} \mathrm{H}$ NMR $\delta 7.39$ (s, 2 H), $7.06(\mathrm{~s}, 4 \mathrm{H}), 6.88(\mathrm{~s}, 4 \mathrm{H}), 4.17$ and $3.39(\mathrm{ABq}, 4 \mathrm{H}$, $J=12.5 \mathrm{~Hz}), 4.09(\mathrm{t}, 4 \mathrm{H}), 3.03(\mathrm{t}, 4 \mathrm{H}), 2.32(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~s}$, 18 H), 1.00 (s, 18 H); ${ }^{13} \mathrm{C}$ NMR $\delta 150.3$ (s), 148.8 (s), 147.6 (d), 142.1 (s), 132.5 (s), 127.5 (s), 125.8 (d), 125.3 (s), 119.4 (s), 73.3 (t), $34.0(\mathrm{~s}), 33.9(\mathrm{~s}), 31.8(\mathrm{t}), 31.7(\mathrm{t}), 31.0(\mathrm{q}), 26.6(\mathrm{t}), 14.2(\mathrm{t})$; FAB mass spectrum, + m/e 783.2 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd 783.5). Anal. Caled for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 0.1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 78.95 ; \mathrm{H}, 8.41 ; \mathrm{N}$, 3.53. Found: C, 79.29 ; H, 8.77 ; N, 3.60.

5,11,17,23-Tetra-p-tert-butyl-25,26,27,28-tetrakis[(cyanopropyl)oxy]calix[4]arene (3). $\mathrm{NaH}(1.00 \mathrm{~g}, 33.20 \mathrm{mmol})$ and p-tert-butylcalix[4]arene $(2.60 \mathrm{~g}, 3.30 \mathrm{mmol}) 2$ was stirred 1 h at room temperature in DMF (125 mL). 4-Bromobutyro-

[^7]nitrile ($3.95 \mathrm{~g}, 330 \mathrm{mmol}$) was added and the mixture was stirred at $75^{\circ} \mathrm{C}$ for 20 h . DMF was evaporated and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed with 1 N HCl ($100 \mathrm{~mL}, 2 \times$), saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL}, 3 \times$), and brine (100 mL), and dried with MgSO_{4}. After filtration $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and the residue was triturated with MeOH yielding a pure white solid: yield 70%; mp $277-278^{\circ} \mathrm{C}$; IR (KBr) 2246 $\mathrm{cm}^{-1}(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.80(\mathrm{~s}, 8 \mathrm{H}), 4.27$ and $3.22(\mathrm{ABq}, 8 \mathrm{H}$, $J=12.6 \mathrm{~Hz}), 4.02(\mathrm{t}, 8 \mathrm{H}), 2.30(\mathrm{t}, 8 \mathrm{H}), 2.28(\mathrm{~m}, 8 \mathrm{H}), 1.08(\mathrm{~s}$, 36 H); ${ }^{13} \mathrm{C}$ NMR $\delta 152.4$ (s), 145.4 (s), 133.2 (d), 125.4 (s), 119.4 (s, CN), 72.9 (t$), 31.4$ (q), $31.0\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 25.8$ (t$), 14.2$ (t$)$; FAB mass spectrum, $+m / e 916.4$ ($[\mathrm{M}]$, calcd 916.6). Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 78.56; H, 8.35; N, 6.11. Found: C, 78.51 ; H, 8.26; N, 6.05 .

5,11,17,23-Tetra-p-tert-butyl-25,26,27,28-tetrakis[(aminobutyl)oxy]calix[4]arene (4). To a suspension of calix[4]arene $3(1.00 \mathrm{~g}, 1.08 \mathrm{mmol})$ and $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.04 \mathrm{~g}$, 8.57 mmol) in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.60 \mathrm{~g}, 42.29$ mmol) batchwise. The black suspension was stirred at room temperature for $26 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added, 3 N HCl added until the black precipitate was dissolved and 25% ammonia solution added until basic pH . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}, 3 \times$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL) and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent yielded a yellowish foam which was immediately used for further reactions: yield 84%; IR $(\mathrm{KBr}) 3357$ and $3284 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.76$ ($\mathrm{s}, 8 \mathrm{H}$), 4.37 and $3.12(\mathrm{ABq}, 4 \mathrm{H}, J=12.4 \mathrm{~Hz}$), $3.86(\mathrm{t}, 8 \mathrm{H}), 2.78(\mathrm{t}, 8 \mathrm{H}), 2.04(\mathrm{~m}, 8 \mathrm{H}), 1.72$ (br m, 8 H), 1.55 (m, 8 H), 1.07 (s, 36 H); ${ }^{13} \mathrm{C}$ NMR $\delta 153.5(\mathrm{~s}), 144.4(\mathrm{~s}), 133.7$ (d), 124.9 (s), 75.0 (t$), 42.4$ (t$), 33.8$ (s$), 31.4$ (q$), 31.1$ (t$), 30.5$ (t), 27.7 (t); FAB mass spectrum, $+m / e 933.5$ ([M], calcd 933.3).

General Procedure for the Preparation of $5,11,17,23-$ Tetra-p-tert-butyl-25,26,27,28-tetrakis[[N^{\prime}-R-(thio)ureido)butyl]oxy]calix[4]arene (5a-d and 6). To p-tert-butylcalix[4]arene $4(0.50 \mathrm{~g}, 0.54 \mathrm{mmol})$, dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, was added 2.16 mmol of the appropriate isocyanate (for $5 \mathrm{a}-$ d) or phenylisothiocyanate (for 6). The mixture was stirred at room temperature for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the organic layer was separated, washed with brine (20 mL), and dried with MgSO_{4}. Evaporation of the solvent yielded the crude products which were purified as described below.

5a: $\mathrm{R}=$ phenyl; recrystallized twice from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane; yield 40% of a white solid; $\mathrm{mp} 231-232^{\circ} \mathrm{C}$; IR (KBr) $3327 \mathrm{~cm}^{-1}$ (NH), $1649 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.67(\mathrm{~s}, 4 \mathrm{H}), 7.31(\mathrm{~d}, 8 \mathrm{H})$, $7.21-7.08(\mathrm{~m}, 12 \mathrm{H}), 6.77(\mathrm{~s}, 8 \mathrm{H}), 6.05(\mathrm{t}, 4 \mathrm{H}), 4.33$ and 3.10 $(\mathrm{ABq}, 4 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.79(\mathrm{t}, 8 \mathrm{H}), 3.29(\mathrm{q}, 8 \mathrm{H}), 2.02(\mathrm{br} \mathrm{q}$, 8 H), $1.60(\mathrm{br}$ q, 8 H$), 1.07(\mathrm{~s}, 36 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR 157.1 (s), 153.3 (s), 144.6 (s), 139.0 (s), 133.7 (s), 129.0 (d), 125.0 (d), 122.8 (d), 119.7 (d), 74.6 (t$), 40.7$ (t$), 33.9$ (s$), 31.6$ (t$), 31.5(\mathrm{q}), 31.0(\mathrm{t})$, 28.1 (t), 27.0 (t); FAB mass spectrum: $+m / e 1432.0$ ($[\mathrm{M}+$ $\left.\mathrm{Na}^{+}\right]^{+}$, calcd 1432.8); - m/e $1408.0\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd 1408.8), 1443.8 ($\left[\mathrm{M}+\mathrm{Cl}^{-}\right]^{-}$, calcd 1445.3), 1488.9 ($\left[\mathrm{M}+\mathrm{Br}^{-}\right]^{-}$, calcd 1489.7), 1534.9 ($\left[\mathrm{M}^{-} \mathrm{I}^{-}\right]^{-}$, calcd 1536.7). Anal. Calcd for $\mathrm{C}_{88}-$ $\mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.23 ; \mathrm{H}, 8.03 ; \mathrm{N}, 7.87$. Found: C, 73.90 ; $\mathrm{H}, 7.99$; N, 7.64. Karl Fisher for $0.8 \mathrm{H}_{2} \mathrm{O}$ calcd 1.02%. Found: 1.00%.
5b: $\mathrm{R}=\mathrm{n}$-propyl; recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane; yield 46% of a white solid; mp $232-233^{\circ} \mathrm{C}$; IR (KBr) $3343 \mathrm{~cm}^{-1}$ $(\mathrm{NH}), 1628 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.76(\mathrm{~s}, 8 \mathrm{H}), 5.84(\mathrm{t}, 4 \mathrm{H})$, $5.60(\mathrm{t}, 4 \mathrm{H}), 4.32(\mathrm{ABq}, 4 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.89(\mathrm{t}, 8 \mathrm{H}), 3.25$ (t, 8 H$), 3.10(\mathrm{~m}, 12 \mathrm{H}), 2.93(\mathrm{q}, 8 \mathrm{H}), 1.54(\mathrm{~m}, 8 \mathrm{H}), 1.50(\mathrm{~m}$, $8 \mathrm{H}), 1.06(\mathrm{~s}, 36 \mathrm{H}), 0.93(\mathrm{t}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 159.6(\mathrm{~s}), 153.4$ (s), 144.5 (s), 133.7 (d), 125.0 (s$), 75.1$ (t$), 42.3$ (t), 40.3 (t), 33.8 (s), 31.4 (t), 30.9 (t$), 28.1$ (t$), 27.3$ (t$), 23.4$ (t), 11.4 (q); FAB mass spectrum, $+m / e 1296.7\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}\right.$, calcd 1296.6). Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{8} \cdot 1.2 \mathrm{H}_{2} \mathrm{O} \cdot 0.1 \mathrm{CHCl}_{3}$: $\mathrm{C}, 70.10 ; \mathrm{H}, 9.47, \mathrm{~N}$, 8.59. Found: C, 69.75; H, 9.32; N, 8.36. Karl Fisher for $1.2 \mathrm{H}_{2} \mathrm{O}$ calcd: 1.66%. Found: 1.74%.

5c: $\mathrm{R}=\mathrm{n}$-octyl; purified by column chromatography (SiO_{2} : $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=97: 3$) followed by recrystallization from MeOH ; yield 42%; mp $163-164{ }^{\circ} \mathrm{C}$; IR (KBr) $3344 \mathrm{~cm}^{-1}$ (NH), $1623 \mathrm{~cm}^{-1}(\mathrm{C}=0)$) ${ }^{1} \mathrm{H}$ NMR $\delta 7.12(\mathrm{~s}, 8 \mathrm{H}), 5.76(\mathrm{t}, 4 \mathrm{H}), 5.46$ $(\mathrm{t}, 4 \mathrm{H}), 4.41$ and $3.06(\mathrm{ABq}, 4 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.80(\mathrm{t}, 8 \mathrm{H})$, $3.25(\mathrm{q}, 8 \mathrm{H}), 3.15(\mathrm{q}, 8 \mathrm{H}), 2.05(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~m}, 8 \mathrm{H}), 1.47$ $(\mathrm{m}, 8 \mathrm{H}), 1.26(\mathrm{~m}, 40 \mathrm{H}), 1.06(\mathrm{~s}, 36 \mathrm{H}), 0.87(\mathrm{t}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\delta 159.7$ (s), 153.4 (s), 144.4 (s), 133.7 (d), 125.0 (s), 75.1 (t$), 40.7(\mathrm{t}), 40.4(\mathrm{t}), 33.8(\mathrm{~s}), 31.9(\mathrm{t}), 31.4(\mathrm{t}), 30.9(\mathrm{q}), 30.5(\mathrm{t})$, $29.5(\mathrm{t}), 29.4(\mathrm{t}), 28.1(\mathrm{t}), 27.3(\mathrm{t}), 27.1(\mathrm{t}), 22.7(\mathrm{t}), 14.1(\mathrm{q}) ;$ FAB mass spectrum, $+m / e 1554.1$ ([M], calcd 1554.1), $-m / e$ $1552.7\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd 1553.2). Anal. Calcd for $\mathrm{C}_{96} \mathrm{H}_{160} \mathrm{~N}_{8} \mathrm{O}_{8}{ }^{\circ}$ $\mathrm{MeOH}: \mathrm{C}, 73.45 ; \mathrm{H}, 10.41 ; \mathrm{N}, 7.06$. Found: C, 73.51; H, 10.22; N, 6.74.

5d: $\mathrm{R}=$ tert-butyl; purified by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=96: 4\right)$ followed by recrystallization from 1-propanol/ $\mathrm{Et}_{2} \mathrm{O}$; yield 59%; mp $\geq 300^{\circ} \mathrm{C}$; IR (KBr) $3357 \mathrm{~cm}^{-1}$ $(\mathrm{NH}), 1628 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.76(\mathrm{~s}, 8 \mathrm{H}), 5.81(\mathrm{br} \mathrm{s}, 4$ $\mathrm{H}), 5.35$ (br s, 4 H$), 4.32$ and 3.09 (ABq, $4 \mathrm{H}, J=12.4 \mathrm{~Hz}$), $3.79(\mathrm{t}, 8 \mathrm{H}), 3.21(\mathrm{q}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~m}, 8 \mathrm{H}), 1.31(\mathrm{~s}$, $36 \mathrm{H}), 1.06(\mathrm{~s}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 159.0(\mathrm{~s}), 153.4(\mathrm{~s}), 144.4(\mathrm{~s})$, 133.7 (d), 125.0 (s$), 75.2$ (t), 50.0 (t), 40.4 (t), 33.8 (s$), 31.5(\mathrm{q})$, $30.9(\mathrm{t}), 29.7$ (q), 28.1 (s), 27.3 (t$) ; \mathrm{FAB}$ mass spectrum, + m/e $1330.2\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd 1330.0). Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{128} \mathrm{~N}_{8} \mathrm{O}_{8^{\circ}}$ $1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.74 ; \mathrm{H}, 9.87$; N, 8.30 . Found: $\mathrm{C}, 70.81 ; \mathrm{H}, 9.72$; N, 8.26. Karl Fisher for $1.5 \mathrm{H}_{2} \mathrm{O}$ calcd: 2.03\%. Found: 1.96\%.

6: $\mathrm{R}=$ phenyl, purified by trituration with diisopropyl ether followed by column chromatography $\left(\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=\right.$ $97: 3$) of the precipitate; yield 41%; mp $143-144^{\circ} \mathrm{C}$; IR (KBr) $3235 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.86(\mathrm{~s}, 4 \mathrm{H}), 7.28(\mathrm{~m}, 8 \mathrm{H}), 7.19$ $(\mathrm{m}, 12 \mathrm{H}), 6.69(\mathrm{~s}, 8 \mathrm{H}), 6.68(\mathrm{~s}, 4 \mathrm{H}), 4.32$ and $3.12(\mathrm{ABq}, 4 \mathrm{H}$, $J=12.4 \mathrm{~Hz}), 3.85(\mathrm{t}, 8 \mathrm{H}), 3.72(\mathrm{q}, 8 \mathrm{H}), 2.05(\mathrm{~m}, 8 \mathrm{H}), 1.73$ $(\mathrm{m}, 8 \mathrm{H}), 1.08(\mathrm{~s}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 180.4(\mathrm{~s}), 153.3(\mathrm{~s}), 144.6$ (s), 135.6 (s), 133.7 (s), 129.7 (d), 126.7 (d), 125.0 (d), 122.4 (d), 74.6 (t$), 45.6$ (t), 33.8 (s), 31.5 (q), 31.1 (t$), 27.9$ (t), 26.0 (t$)$; FAB mass spectrum, $+m / e 1496.7\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}\right.$, calcd 1497.0$)$, $-m / e 1470.6\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd 147.8). Anal. Calcd for $\mathrm{C}_{88} \mathrm{H}_{112-}$ $\mathrm{N}_{8} \mathrm{O}_{4} \mathrm{~S}_{4}: \mathrm{C}, 71.70 ; \mathrm{H}, 7.66 ; \mathrm{N}, 7.60 ; \mathrm{S}, 8.70$. Found: C, 71.51; H, 8.01; N, 7.46; S, 8.37.

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(cyanopropyl). oxy]-26,28-dipropoxycalix[4]arene (7). $\mathrm{NaH}(0.31 \mathrm{~g}, 7.66$ $\mathrm{mmol})$ and calix[4]arene $2(1.0 \mathrm{~g}, 1.28 \mathrm{mmol})$ in DMF (50 mL) were stirred for 1 h at room temperature. n -Propyl iodide (0.76 $\mathrm{mL}, 7.80 \mathrm{mmol}$) was added and the mixture was stirred for 24 h at $75^{\circ} \mathrm{C}$. DMF was evaporated and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL}, 2 \times)$, saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL}, 3 \times)$, and brine $(50 \mathrm{~mL})$ and dried with MgSO_{4}. After evaporation of the solvent the crude product was triturated with MeOH . An analytically pure sample was obtained by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$: yield 61%; mp $217-219^{\circ} \mathrm{C}$; IR (KBr) $2245 \mathrm{~cm}^{-1}(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.07(\mathrm{~s}, 4 \mathrm{H}), 6.49(\mathrm{~s}, 4 \mathrm{H}), 4.31$ and $3.16(\mathrm{ABq}, 4 \mathrm{H}, J=12.4$ $\mathrm{Hz}), 4.07(\mathrm{t}, 4 \mathrm{H}), 3.72(\mathrm{t}, 4 \mathrm{H}), 2.68(\mathrm{t}, 4 \mathrm{H}), 2.41(\mathrm{~m}, 4 \mathrm{H})$, $1.93(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 1.04(\mathrm{t}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 153.4$ (s), 152.3 (s), 145.5 (s), 144.2 (s), 135.1 (d), 132.1 (d), 125.6 (s), 124.7 (s), 119.0 (s), 72.7 (t), 34.1 (s), 33.7 (s), 31.7 (q), 31.2 (q), 31.0 (t), 25.9 (t), 23.6 (t), 14.1 (t), 10.6 (q); FAB mass spectrum, $+m / e 866.9$ ([M], calcd 866.6). Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 80.33; H, 9.07 ; N, 3.23. Found: C, 80.15 ; H, 9.19; N, 3.01.

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[(aminobutyl)-oxy]-26,28-dipropoxycalix[4]arene (8). The same procedure as for the preparation of compound 4 was followed. The
yellowish foam was immediately used for further reactions: yield 87%; IR (KBr) $3380 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.74$ (s, 4 H), $6.66(\mathrm{~s}, 4 \mathrm{H}), 4.37$ and $3.03(\mathrm{ABq}, 4 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}), 3.82(\mathrm{t}, 4$ $\mathrm{H}), 3.73(\mathrm{t}, 4 \mathrm{H}), 2.72(\mathrm{t}, 4 \mathrm{H}), 2.02-1.82(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.42$ $(\mathrm{m}, 8 \mathrm{H}), 1.03(\mathrm{~s}, 18 \mathrm{H}), 0.97(\mathrm{~s}, 18 \mathrm{H}), 0.93(\mathrm{t}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 153.7$ (s), 153.5 (s), 144.4 (s), 144.2 (s), 134.0 (d), 133.5 (d), 125.0 (s$), 124.9(\mathrm{~s}), 74.9(\mathrm{t}), 42.5(\mathrm{t}), 33.9(\mathrm{~s}), 33.8(\mathrm{~s}), 31.8(\mathrm{t})$, $31.5(\mathrm{q}), 31.4(\mathrm{q}), 31.1(\mathrm{t}), 30.7(\mathrm{t}), 27.6(\mathrm{t}), 23.4(\mathrm{t}), 10.5(\mathrm{q}) ;$ FAB mass spectrum, $+m / e 875.7$ ([M], calcd 875.2).

5,11,17,23-Tetra-p-tert-butyl-25,27-bis[[N^{\prime}-phenylure-ido)butyl]oxy]-26,28-dipropoxycalix[4]arene (9). The same procedure as for the preparation of compounds 5a-d was followed. Purified by column chromatography ($\mathrm{SiO}_{2}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH}=98: 2$) followed by recrystallization from MeOH : yield 35%; mp 251-252 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3350 \mathrm{~cm}^{-1}(\mathrm{NH}), 1655 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.71$ (br s, 2 H), 7.24 (d, 4 H$), 7.16(\mathrm{t}, 4 \mathrm{H})$, $7.10(\mathrm{~s}, 4 \mathrm{H}), 6.93(\mathrm{t}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 4 \mathrm{H}), 6.12(\mathrm{br} \mathrm{t}, 2 \mathrm{H}), 4.36$ and $3.11(\mathrm{ABq}, 4 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.97(\mathrm{t}, 4 \mathrm{H}), 3.62(\mathrm{t}, 4 \mathrm{H})$, $3.35(\mathrm{q}, 4 \mathrm{H}), 2.20(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.33$ $(\mathrm{s}, 18 \mathrm{H}), 0.95(\mathrm{t}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.8(\mathrm{~s})$, 154.7 (s), 152.5 (s), 144.8 (s), 143.9 (s), 139.1 (s), 135.6 (d), 131.9 (d), 129.0 (d), 125.5 (s), 124.4 (s), 122.9 (d), 120.1 (d), 74.7 (t), 40.7 (t), 34.1 (s), 33.6 (s), 31.8 (q), 31.2 (q), 31.1 (t), 27.7 (t$)$, $26.8(\mathrm{t}), 23.6(\mathrm{t}), 10.9(\mathrm{q}) ;$ FAB mass spectrum, $+m / e 1113.9$ ([M], calcd 1113.5), -m/e 1112.1 ($[\mathrm{M}-\mathrm{H}]^{-}$, calcd 1112.5). Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: $\mathrm{C}, 75.23 ; \mathrm{H}, 8.76 ; \mathrm{N}, 4.87$. Found: C, $74.96 ; \mathrm{H}, 8.54$; N, 4.87. Karl Fisher for $2 \mathrm{H}_{2} \mathrm{O}$ calcd: 3.13%. Found: 3.12%.
${ }^{1} \mathrm{H}$ NMR Titrations. A 5 mM solution of the host in CDCl_{3} was prepared. To 1 mL of this solution $0-4$ equiv of the tetrabutylammonium salts were added in the ${ }^{1} \mathrm{H}$ NMR tube and the spectra were recorded. The chemical shifts of the NH proton were followed and plotted against the equivalents of guest added. The association constants were determined using a nonlinear regression procedure. ${ }^{32}$
Job Plot. ${ }^{31}$ Stock solution for the host (5 mM) and for the tetrabutylammonium salts (5 mM) in CDCl_{3} were prepared. Ten ${ }^{1} \mathrm{H}$ NMR tubes were filled with $500 \mu \mathrm{~L}$ solutions of the host and guest in the following volume ratios: $50: 450,100$: 400, 150:350, 200:300, 250:250, 300:200, 350:150, 400:100, 450: $50,500: 0 .{ }^{1} \mathrm{H}$ NMR spectra were recorded and the concentration of the complex was calculated as follows: [complex] = ([calix] $\left.{ }_{\text {tot }}\right) \times\left(\delta_{\text {obs }}-\delta_{\text {calix }}\right) /\left(\delta_{\text {complex }}-\delta_{\text {calix }}\right)$, where [calix] tot is the total concentration of the host in solution, $\delta_{\text {obs }}$ is the observed chemical shift, $\delta_{\text {calix }}$ is the chemical shift of the NH protons of the host, and $\delta_{\text {complex }}$ is the chemical shift of the NH protons in the complex.

Acknowledgment. The research described in this paper was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO). We also acknowledge A. M. Montanaro-Christenhusz for performing element analyses, and T. W. Stevens for recording the mass spectra.

[^0]: + On leave from the Instituto di Chimica di Organica dell'Universita, Viale delle Scienze, I-43100, Parma, Italy.
 * Abstract published in Advance ACS Abstracts, October 15, 1994.
 (1) (a) Van Straaten-Nijenhuis, W. F.; de Jong, F.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1992, 112, 317. (b) Nijenhuis, W. F.; van Doorn, A. R.; Reichwein, A. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 3607. (c) Nijenhuis, W. F.; van Doorn, A. R.; Reichwein, A. M.; de Jong, F.; Reinhoudt, D. N. J. Org. Chem. 1993, 58 , 2265. (d) Nijenhuis, W. F.; Buitenhuis, E. G.; de Jong, F.; Südholter, E. J. R.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113 , 7963.
 (2) (a) Cobben, P. L. H. M.; Egberink, R. J. M.; Bomer, J. G.; Bergveld, P.; Verboom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992 , 114, 10573. (b) Brunink, J. A. J.; Haak, J. R.; Bomer, J. G.; Reinhoudt, D. N.; McKervey, M. A.; Harris, S. J. Anal. Chim. Acta 1991, 254, 75. (c) Brzozka, Z.; Lammerink, B. Reinhoudt, D. N.; Ghidini, E.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1993, 1037.
 (3) (a) Dietrich, B.; Guilhem, J.; Lehn, J.-M.; Pascard, C.; Sonveaux, E. Helv. Chim. Acta 1984, 67, 91. (b) Schmidtchen, F. P. J. Org. Chem. 1986, 51, 5161. (c) Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Am. Chem. Soc. 1990, 112, 3896. (d) Sessler, J. L.; Cyr, M.; Furuta, H.; Kral, V.; Mody, T.; Morishima, T.; Shionoya, M.; Weghorn, S. Pure Appl. Chem. 1993, 65, 393.
 (4) (a) Deslongchamps, G.; Galán, A.; de Mendoza, J.; Rebek, J., Jr. Angew. Chem. Int. Ed. Engl. 1992, 31, 61. (b) Echavarren, A.; Galán, A.; Lehn, J.-M.; de Mendoza, J. J.Am. Chem. Soc. 1989, 111, 4994. (c) Schiessl, P.; Schmidtchen, F. P. Tetrahedron Lett. 1993, 34, 2449. (d) Müiler, G.; Riede, J.; Schmidtchen, F. P. Angew. Chem. 1988, 27, 1574.
 (5) In these recognition processes also $\pi-\pi$ stacking is involved.

[^1]: (6) (a) Beer, P. D.; Hesek, D.; Hodacova, J.; Stokes, S. E. J. Chem. Soc., Chem. Commun. 1992, 270. (b) Beer, P. D.; Hazlewood, C.; Hesek, D.; Hodacova, J.; Stokes, S. E. J. Chem. Soc., Dalton Trans. 1993, 1327. (c) Beer, P. D.; Drew, M. G. B.; Hazlewood, C.; Hesek, D.; Hodacova, J.; Stokes, S. E. J. Chem. Soc., Chem. Commun. 1993, 229. (d) Beer, P. D.; Dickson, C. A. D.; Fletcher, N.; Goulden, A. J.; Grieve, A.; Hodacova, J.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 828.
 (7) Jung, M. E.; Xia, H. Tetrahedron Lett. 1988, 29, 297.
 (8) (a) Katz, H. E. J. Am. Chem. Soc. 1986, 108, 7640. (b) Katz, H. E. J. Org. Chem. 1989, 54, 2179. (c) Katz, H. E. Ibid. 1985, 50, 5027.
 (9) Reetz, M. T.; Niemeyer, C. M.; Harms, K. Angew. Chem. Int. Ed. Engl. 1991, 30, 1472 and 1474.
 (10) Blanda, M. T.; Horner, J. N.; Newcomb, M. J. Org. Chem. 1989, 54, 4626.
 (11) (a) Yang, X.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem. Int. Ed. Engl. 1991, 30, 1507. (b) Zheng, Z.; Yang, X.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1993, 115, 5320. (c) Hawthorne, M. F.; Yang, X.; Zheng, Z. Pure Appl. Chem. 1994, 66, 245. (d) Wuest, J. D.; Zacharie, B. J. Am. Chem. Soc. 1987, 109, 4715.
 (12) Rudkevich, D. M.; Stauthamer, W. P. R. V.; Verboom, W.; Engbersen, J. F. J.; Harkema, S.; Reinhoudt, D. N. J.Am. Chem. Soc. 1992, 114, 9671.
 (13) (a) He, J. J.; Quiocho, F. A. Science 1991, 251, 1479. (b) Pfugrath, J. W.; Quiocho, F. A. Nature 1985, 314, 257.
 (14) Kanyo, Z. F.; Christianson, D. W. J. Biol. Chem. 1991, 266, 4264.
 (15) Tatcher, G. R. J.; Cameron, D. R.; Nagelkerke, R.; Schmitke, J. J. Chem. Soc. Chem. Commun. 1992, 386.

[^2]: (16) Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Angew. Chem. Int. Ed. Engl. 1993, 32, 900.
 (17) Morzherin, Y.; Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1993, 58, 7602.
 (18) Fan, E.; Van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am. Chem. Soc. 1998, 115, 369.
 (19) (a) Hamann, B. C., Branda, N. R.; Rebek, J., Jr. Tetrahedron Lett. 1993, 34, 6837. (b) Albert, S.; Hamilton, A. D. Tetrahedron Lett. 1993, 34, 7363.
 (20) (a) Gutsche, C. D. Calixarenes; Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry; Cambridge, 1989; Vol. 1. (b) Vincens, J., Bohmer, V., Eds. Calixarenes: a Versatile Class of Macrocyclic Compounds; Topics in Inclusion Science; Kluwer Academic Press: Dordrecht, 1991.
 (21) Van Loon, J.-D.; Heida, J. F.; Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1992, 111, 353.

[^3]: (22) Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. J. Am. Chem. Soc. 1981, 103, 3782.
 (23) de Mendoza, J.; Prados, P.; Nieto, P. M.; Sanchez, C. J. Org. Chem. 1991, 56, 3372.
 (24) Satoh, T.; Suzuki, S.; Suzuki, Y.; Miyaji, Y.; Imai, Z. Tetrahedron Lett. 1969, 52, 4555.
 (25) Satchel, D. P. N.; Satchell, R. S. Chem. Soc. Rev. 1975, 4, 231.

[^4]: (26) Chang, S.-K.; Cho, I. J. Chem. Soc., Perkin Trans. 1 1986, 211. (27) (a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120. (b) Etter, M. C.; Panuto, T. W. J. Am. Chem. Soc. 1988, 110, 5896.
 (28) (a) Zhao, X.; Yuh-Loo, C.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 1990, 112, 6627. (b) Lauher, J. W.; Yuh-Loo, C.; Fowler, F. W. Mol. Cryst. Liq. Cryst. 1992, 221, 99. (c) Yuh-Loo, C.; West, M.-A.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 1993, 115, 5991. (29) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.
 (30) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

[^5]: (31) Conners, K. A. Binding Constants, 1st ed.; John Wiley \& Sons: New York, 1987; p 24.
 (32) De Boer, J. A. A.; Reinhoudt, D. N.; Harkema, S.; van Hummel, G. J.; de Jong, F. J. Am. Chem. Soc. 1982, 104, 4073.

[^6]: (33) An example of self-association of calix[4]arenes at the upper rim functionalized with pyridone moieties has been described: Van Loon, J.-D.; Janssen, R. G.; Verboom, W.; Reinhoudt, D. N. Tetrahedron Lett. 1992, 34, 5125.
 (34) The self-association of compounds $\mathbf{5 a}-\mathbf{e}, \mathbf{6}$, and $\mathbf{9}$ is currently under investigation.
 (35) The work on membrane transport studies will be reported later.
 (36) Bordwell, E.; Algrim, D. J.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1988, 110, 5903.

[^7]: (37) Gutsche, C. D.; Iqbal, M.; Stewart, D. J. Org. Chem. 1986, 51, 742.

